Home
Class 12
MATHS
Solve the equation (1-tantheta)(1+sin2th...

Solve the equation `(1-tantheta)(1+sin2theta)=1+tantheta`

Text Solution

Verified by Experts

The correct Answer is:
`npi , npi -(pi)/4 `
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tan theta))^(2)

Find the general solution for each of the following equations : tantheta+tan2theta+tantheta.tan2theta=1

theta_(1),theta_(2)in[0,2pi]andtheta_(1) and theta_(2) satisfy the equation tantheta=1 then tan((theta_(1))/(2)).tan((theta_(2))/(2))= ………….

Prove the following : (All angles are acute angles.) (tantheta+sintheta)/(tantheta-sintheta)=(sectheta+1)/(sectheta-1)

Find the general solution for each of the following equations : sintheta=tantheta

(i) The points (-1, 0), (4, -2) and (cos 2theta, sin 2 theta) are collinear (ii) The points (-1,0), (4, -2) and ((1-tan^(2)theta)/(1+tan^(2)theta),(2tan theta)/(1+tan^(2)theta)) are collinear

Solve the equation cot((theta )/(2))-"cosec"((theta)/2)=cot theta

Prove the following identities : (1+tan^(2)theta)/(1+cot^(2)theta)=((1-tantheta)/(1-cottheta))^(2)

Find the general solution for each of the following equations : tantheta+tan(theta+(pi)/(3))+tan(theta+(2pi)/(3))=3

Show that the two straight lines x^2(tan^2theta+cos^2theta)-2xy tantheta+y^2sin^2theta=0 Move with the axis of x angles such that the difference of their tangents is 2 .