Home
Class 12
MATHS
Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)c...

Let `f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_3+x)++1/(2^(n-1))cos(a_n+x)` where `a)1,a_2 a_n in Rdot` If `f(x_1)=f(x_2)=0,t h e n|x_2-x_1|` may be equal to `pi` (b) `2pi` (c) `3pi` (d) `pi/2`

A

`pi`

B

`2pi`

C

`3pi `

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

cos 2x- 3 cos x + 1=(1)/((cot 2 x - cot x)sin (x-pi)) holds , if

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that cos((3pi)/(2)+x)cos(2pi+x)[cot((3pi)/(2)-x)+cot(2pi+x)]=1

If 1/2tan^(- 1)((2x)/(x^2-1))+cos^(- 1)((x^2-1)/(x^2+1))=(2pi)/3 then x=

Prove that cos((3pi)/(2)+x)cos(2pi+x).{cot((3pi)/(2)-x)+cot(2pi+x)}=1

f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) then f'(x) = ………