Home
Class 12
MATHS
Let x, y, z be elements from interval [...

Let `x, y, z` be elements from interval `[0,2pi] ` satisfying the inequality ` (4+ sin 4 x )(2+ cot^(2) y)(1+ sin^(4) z) le 12 sin^(2) z ` , then

A

the number of ordered pairs (x,y) is 5

B

the number of ordered pairs (y,z) is 8

C

the number of ordered pairs (z,x) is 8

D

the number of pairs (y,z) such that z=y is 2

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y=(4pi)/(3) and sin x = 2 sin y , then

Solve the inequality (5)/4 sin^(2) x + sin^(2) x * cos^(2) gt cos 2x.

The number of values of x in the interval [0, 3pi] satisfying the equation 2sin^2x + 5sin x- 3 = 0 is

Find all number of pairs x,y that satisfy the equation tan^4 x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

(cos x + cos y ) ^(2) + (sin x - sin y ) ^(2) = 4 cos ^(2) ""(x + y )/( 2)

Number of ordered pair (x,y) which satisfies the relation (x^(4)+1)/(8x^(2))=sin^(2)y*cos^(2) y , where y in [0,2pi]

prove that lim_(x to pi//2)(sin(cot^(2)x))/((pi-2x)^(2))= 1/4

Factorise : 4x^(2) + 9y^(2) + z^(2) + 12xy - 6yz - 4zx