Home
Class 12
MATHS
The number of solutions of the equation...

The number of solutions of the equation `[y+[y]]=2 cosx, ` where `y=(1)/(3)[sinx+[sinx+[sinx]]]` (where [.] denotes the greatest integer function) is

A

0

B

1

C

2

D

infinte

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Sketch the curves (ii) y=[x]+sqrt(x-[x]) (where [.] denotes the greatest integer function).

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

Find the number of solutions of the equations y=|sinx| and x^(2)+y^(2)=1.

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

Find the number of solution of the equations |cos x |=[x] , (where [.] denotes the greatest integer function ).

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

Find the angle of intersection of curves y=[|sinx|+|cosx|]a n dx^2+y^2=5, where [.] denotes the greatest integral function.