Home
Class 12
MATHS
The value of x , 0 le x le (pi)/2 which...

The value of x ` , 0 le x le (pi)/2` which satisfy the equation ` 81^( sin^(2)x)+81^(cos^(2)x)=30 ` are

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(6)`

D

`(7pi)/(18)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation 16^(sin^(2)x)+16^(cos^(2)x)=10,x in[0,3pi] is …………..

The number of values of y in [-2pi,2pi] satisfying the equation abs(sin2x)+abs(cos2x)=abs(siny) is

Find all number x , y that satisfy the equation (sin^2 x +(1)/( sin^(2) x))^(2)+( cos^(2)x+(1)/(cos^(2)x))^(2)=12+(1)/(2) siny.

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

The number of values of x in the interval [0, 3pi] satisfying the equation 2sin^2x + 5sin x- 3 = 0 is

Find the ragne of the expression 27^(cos 2x) 81^(sin 2x)

If 0 le x le 2pi and |cos x | le sin x , the

For x in (-pi, pi) find the value of x for which the given equation (sqrt 3 sin x + cos x)^(sqrt(sqrt3 sin 2 x-cos 2 x+2))=4 is satisfied.

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is