Home
Class 12
MATHS
Consider the equation 5 sin^2 x + 3 sin ...

Consider the equation `5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 `.......... (i)
`sin^2 x - cos 2 x =2-sin 2 x `........... (ii)
The number of solutions common to (i) and (ii) is

A

0

B

1

C

finite

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If alpha is a root of (i) and beta is a root of (ii), then tan alpha + tan beta can be equal to

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If tan alpha , tan beta satisfy (i) and cos gamma , cos delta satisfy (ii) , then tan alpha * tan beta + cos gamma + cos delta can be equal to

sin 2x + cos x =0

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

Prove that = (sin 5x - 2 sin 3 x + sin x)/( cos 5x - cos x) = tan x

(sin 5x + sin 3x )/( cos 5x + cos 3x ) = tan 4x

Solve the inequality (5)/4 sin^(2) x + sin^(2) x * cos^(2) gt cos 2x.

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

The solution of the equation sin 2x + sin 4x = 2 sin 3x is

int (dx)/(sin^(2)x cos^(2)