Home
Class 12
MATHS
Find all number of pairs x,y that satisf...

Find all number of pairs x,y that satisfy the equation `tan^4 x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y)` .

Text Solution

Verified by Experts

The correct Answer is:
`x=y=m pi pm (pi)/4 , n in I `
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all the pairs of x,y that satisfy the equation cosx+cosy+cos(x+y)=-3/2

Find all number x , y that satisfy the equation (sin^2 x +(1)/( sin^(2) x))^(2)+( cos^(2)x+(1)/(cos^(2)x))^(2)=12+(1)/(2) siny.

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

The number of pairs (x,y) which will satisfy the equation x^2-x y+y^2=4(x+y-4) is

Solve the equation (tan x )^( cos^(2) x)= ( cot x )^( sin x )

x + y = tan^(-1)y : y^(2)y' + y^(2) + 1 = 0

If the sum of all value of x satisfying the system of equations tan x + tan y+ tan x* tan y=5 sin (x +y)=4 cos x * cos y is (k pi )/2 , where x in (0, (pi)/(2)) then find the values of k .

Find the number solution are ordered pair (x,y) of the equation 2^(sec^(2)x)+2^("cosec"^(2)y)=2cos^(2)x(1-cos^(2)y) in [0,2pi]

Number of ordered pair (x,y) which satisfies the relation (x^(4)+1)/(8x^(2))=sin^(2)y*cos^(2) y , where y in [0,2pi]

Let x, y, z be elements from interval [0,2pi] satisfying the inequality (4+ sin 4 x )(2+ cot^(2) y)(1+ sin^(4) z) le 12 sin^(2) z , then