Home
Class 12
MATHS
Solve the equation for x and y , |sin x ...

Solve the equation for x and y , `|sin x + cos x|^( sin^(2) x-1//4)=1+|siny| and cos^(2)y=1+sin^(2)y`.

Text Solution

Verified by Experts

The correct Answer is:
`x=2 m pi +(pi)/(2) , 2m pi , n pi pm (pi)/6 and y=kpi; m,n,k in I `
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of normal to y = sin x at ((pi)/(2),1) is ……….

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

Solve the inequality (5)/4 sin^(2) x + sin^(2) x * cos^(2) gt cos 2x.

Solve the following equations : sin^(-1)x+cos^(-1)(2x)=pi/6

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

If y= a sin x + b cos x then, y^(2) + (y_(1))^(2) = ……. (a^(2) + b^(2) ne 0)

(cos x + cos y ) ^(2) + (sin x - sin y ) ^(2) = 4 cos ^(2) ""(x + y )/( 2)

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x