Home
Class 12
MATHS
The positive integer value of n >3 satis...

The positive integer value of `n >3` satisfying the equation `1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s`

Text Solution

Verified by Experts

The correct Answer is:
7
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

sin((pi)/(16))sin((3pi)/(16))sin((5pi)/(16))sin((7pi)/(16))= ………..

The number of positive integers satisfying the inequality .^(n+1)C(n-2)-.^(n+1)C(n-1)<=100 is

The value of sin((pi)/(18))+sin((pi)/(9))+sin((2pi)/(9))+sin((5pi)/(18)) is

The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos((-31pi)/9)))

Find the value of each of the expressions in sin^(-1)("sin"(2pi)/3)

For a positive integer n , find the value of (1-i)^(n)(1-(1)/(i))^(n)

Find the values of the following :- (a)sin(2pi+(pi)/(6)),(b)cos(2pi+(pi)/(3))

Evaluate the following: sin^(-1)(sin(pi/4)) (ii) cos^(-1)(cos(2pi/3)) tan^(-1)(tan(pi/3))

Prove that, sin((8pi)/(3))cos((23pi)/(6))+cos((13pi)/(3))sin((35pi)/(6))=(1)/(2)