Home
Class 12
MATHS
If 0 le x le 2pi, then the number of rea...

If `0 le x le 2pi`, then the number of real values of x, which satisfy the equation `cos x + cos 2x + cos 3x + cos 4x=0`, is

A

3

B

5

C

7

D

9

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

cos 4x = cos 2x

cos 3x + cos x -2 cos x =0

The number of values of y in [-2pi,2pi] satisfying the equation abs(sin2x)+abs(cos2x)=abs(siny) is

Samllest positive angle satisfying the equation cos^(2)x+cos^(2) 2x+cos^(2)3x=1 , is

The number of solutions of the equation cos 4x+6=7 cos 2x , when x in[315^(@),317^(@)] is

If the sum of all value of x satisfying the system of equations tan x + tan y+ tan x* tan y=5 sin (x +y)=4 cos x * cos y is (k pi )/2 , where x in (0, (pi)/(2)) then find the values of k .

If 0 le x le 2pi and |cos x | le sin x , the

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is