Home
Class 12
MATHS
If omega is a non-real complex cube root...

If `omega` is a non-real complex cube root of unity, find the values of the following.
(i)`omega^(1999)`
(ii) `omega^(998)`
(iii) `((-1+isqrt(3))/2)^(3n+2),ninNand i=sqrt(-1)`
(iv) `(1+omega)(1+omega )^(2)(1+omega)^(4)(1+omega)^(8)`...upto `2n` factors
(v) `((alpha+betaomega+gammaomega^(2)+deltaomega^(2))/(beta+alphaomega^(2)+gammaomega+deltaomega))," where "alpha,beta,gamma,delta, in R`
(vi) `1*(2-omega)(2-omega^(2))+2*(3-omega)(3-omega^(2))+3*(4-omega)(4-omega^(2))+...+...+(n-1)*(n-omega)(n-omega^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a non-real complex cube root of unity, find the values of (1+omega)(1+omega^(2) )(1+omega^(4))(1+omega^(8)) ...upto 2n factors

If 1,omega,omega^(2),...omega^(n-1) are n, nth roots of unity, find the value of (9-omega)(9-omega^(2))...(9-omega^(n-1)).

If 1,omega,omega^(2) are the cube roots of unity, then the roots of the equation (x-1)^(3)+8=0 are

With 1,omega,omega^(2) as cube roots of unity, inverse of which of the following matrices exists?

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If a,b,c are distinct integers and omega(ne 1) is a cube root of unity, then the minimum value of |a+bomega+comega^(2)|+|a+bomega^(2)+comega| is

Prove that , {[{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega):}]+[{:(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1):}]}[{:(1),(omega),(omega^(2)):}]=[{:(0),(0),(0):}] where omega is the cube root of unit.

Let omega ne 1 be a complex cube root of unity. If (3-3omega+2omega^(2))^(4n+3) + (2+3omega-3omega^(2))^(4n+3)+(-3+2omega+3omega^(2))^(4n+3)=0 , then the set of possible value(s) of n is are