Home
Class 12
MATHS
If z = (sqrt(3)+i)/2 (where i = sqrt(-...

If `z = (sqrt(3)+i)/2` (where `i = sqrt(-1)`) then `(z^101 + i^103)^105` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

sqrt((-8-6i)) is equal to (where, i=sqrt(-1)

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

The real part of (1-i)^(-i), where i=sqrt(-1) is

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If z=(i)^(i)^(i) where i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these