Home
Class 12
MATHS
The mirror image of the curve arg((z-3)/...

The mirror image of the curve `arg((z-3)/(z-i))=pi/6, i=sqrt(- 1)` in the real axis

A

`arg((z+3)/(z+i))=(pi)/(6)`

B

`arg((z-3)/(z+i))=(pi)/(6)`

C

`arg((z+i)/(z+3))=(pi)/(6)`

D

`arg((z+i)/(z-3))=(pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
d
Promotional Banner

Similar Questions

Explore conceptually related problems

The real part of (1-i)^(-i), where i=sqrt(-1) is

Find the point of intersection of the curves arg(z-3i)=(3pi)/4 and arg(2z+1-2i)=pi/4.

If arg(z-1)=arg(z+3i) , then find x-1,y, where z=x+iy

Show that the complex number z, satisfying the condition arg((z-1)/(z+1))=(pi)/(4) lie son a circle.

Statement-I The point A(3, 1, 6) is the mirror image of the point B(1, 3, 4) in the plane x-y+z=5 . Statement-II The plane x-y+z=5 bisect the line segment joining A(3, 1, 6) and B(1,3, 4) .

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

z=i+sqrt(3)=r(cos theta+sin theta)

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)