Home
Class 12
MATHS
If n is an odd integer but not a multipl...

If n is an odd integer but not a multiple of 3, then prove that `xy(x+y)(x^(2)+y^(2)+xy)` is a factor of `(x+y)^(n)-x^(n)-y^(n).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sin (pt), x= sin t , then prove that (1- x^(2))y_(2)-xy_(1)+ p^(2)y= 0

Prove that x^(2n-1)+y^(2n-1) is divisible by x+y

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

If x=sectheta - tantheta and y = cosec theta+ cottheta , then prove that xy +1 = y - x.

Find the linear factors of x^(2)-5xy+4y^(2)+x+2y-2

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

The solution of x^(2)dy-y^(2)dx+xy^(2)(x-y)dy=0, is

If 2x= y^((1)/(m)) + y^(-(1)/(m)) (n ge 1) then prove that, (x^(2)-1) y_(2) + xy_(1) = m^(2)y

If x^(m).y^(n)= (x + y)^(m+n) , prove that (dy)/(dx)= (y)/(x)

y = x sin x : xy' = y + x sqrt(x^(2) - y^(2))(x ne 0 and x gt y or x lt -y)