Home
Class 12
MATHS
The value of sum(r=-3)^(1003)i^(r)(where...

The value of `sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1))` is

A

1

B

-1

C

i

D

`-i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

The real part of (1-i)^(-i), where i=sqrt(-1) is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=-2)^(95)i^(r)+sum_(r=0)^(50)i^(r!)=a+ib, " where " i=sqrt(-1) , the unit digit of a^(2011)+b^(2012) , is

If alpha_(1), alpha_(2), alpha_(3), beta_(1), beta_(2), beta_(3) are the values of n for which sum_(r=0)^(n-1)x^(2r) is divisible by sum_(r=0)^(n-1)x^(r ) , then the triangle having vertices (alpha_(1), beta_(1)),(alpha_(2),beta_(2)) and (alpha_(3), beta_(3)) cannot be

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=4)^(100)i^(r!)+prod_(r=1)^(101)i^(r)=a+ib, " where " i=sqrt(-1) , then a+75b, is

If Delta_(r)=|{:(r,r-1),(r-1,r):}| where is a natural number, the value of root(10)(sum_(r=1)^(1024))Delta_(r) is

The value of sum_(r=2)^n (-2)^r|(n-2C_(r-2),n-2C_(r-1),n-2C_r),(-3,1,1),(2,-1,0)|(n > 2)

If a_(1),a_(2),a_(3),a_(4) and a_(5) are in AP with common difference ne 0, find the value of sum_(i=1)^(5)a_(i) " when " a_(3)=2 .

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.