Home
Class 12
MATHS
The complex number sin(x)+icos(2x) and c...

The complex number `sin(x)+icos(2x)` and `cos(x)-isin(2x)` are conjugate to each other for

A

`x=npi,ninI`

B

`x=0`

C

`x=(n+(1)/(2)),ninI`

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

sinx+i cos 2x and cosx-isin2x are conjugate to each other for

sin 2x + cos x =0

cos(2pi -x) cos (-x) - sin(2pi +x) sin (-x) = 0

cos 4x =1- 8 sin ^(2) x cos ^(2) x

The equation 2 sin""(x)/(2) cos^(2)x-2 sin""(x)/(2) sin^(2) x =cos^(2)x-sin^(2)x has a root for which the false statement is

Evaluate int (dx)/(sin^(2)x cos^(2) x)

The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is equal to

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x