Home
Class 12
MATHS
If|z-i|le5 and z(1)=5+3i (where, i=sqrt...

If`|z-i|le5` and `z_(1)=5+3i` (where, `i=sqrt(-1),` ) the greatest and least values of `|iz+z_(1)|` are

A

7 and 3

B

9 and 1

C

10 and 0

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that |z+4| le 3 then greatest & least values of |z + 1| are

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If |z|ge3, then determine the least value of |z+(1)/(z)| .

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

Fill in the blanks of the following If |z+4| le3 , then the greatest and least values of |z+1| are ... and .....

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If |z+1|=z+2(1+i) then find the value of z.

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If the complex number z is to satisfy abs(z)=3, abs(z-{a(1+i)-i}) le 3 and abs(z+2a-(a+1)i) gt 3 , where i=sqrt(-1) simultaneously for atleast one z, then find all a in R .