Home
Class 12
MATHS
If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1...

If `z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1)` then the cos z is equal to

A

i

B

2i

C

1

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If z = (sqrt(3)+i)/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z=(i)^(i)^(i) where i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If (x+iy)^(1//3)=a+ib,"where"i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If z^(3)+(3+2i)z+(-1+ia)=0, " where " i=sqrt(-1) , has one real root, the value of a lies in the interval (a in R)

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)