Home
Class 12
MATHS
sqrt((-8-6i)) is equal to (where, i=sqrt...

`sqrt((-8-6i))` is equal to (where, `i=sqrt(-1)`

A

`1pm3i`

B

`pm(1-3i)`

C

`pm(1+3i)`

D

`pm(3-i)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If agt0 and blt0, then sqrt(a)sqrt(b) is equal to (where, i=sqrt(-1))

The value of the determinant |{:(sqrt(6),2i,3+sqrt(6)i),(sqrt(12),sqrt(3)+sqrt(8)i,3sqrt(2)+sqrt(6)i),(sqrt(18),sqrt(2)+sqrt(12)i,sqrt(27)+2i):}| is (where i= sqrt(-1)

Express ((costheta+isintheta)^(4))/((sintheta+icostheta)^(5)) in a+ib Form, where i=sqrt(-1).

The principal value of arg (z) , where z=1+cos((8pi)/5)+i sin((8pi)/5) (where, i=sqrt-1) is given by

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

Find the square roots of the following (i) 4+3i (ii) -5+12i (iii) -8-15i (iv) 7-24i(" where " , i=sqrt(-1))

The points A,B and C represent the complex numbers z_(1),z_(2),(1-i)z_(1)+iz_(2) respectively, on the complex plane (where, i=sqrt(-1) ). The /_\ABC , is

Let A,B and C be three sets of complex numbers as defined below: {:(,A={z:Im(z) ge 1}),(,B={z:abs(z-2-i)=3}),(,C={z:Re(1-i)z)=sqrt(2)"where" i=sqrt(-1)):} Let z be any point in A cap B cap C . Then, abs(z+1-i)^(2)+abs(z-5-i)^(2) lies between

The real part of (1-i)^(-i), where i=sqrt(-1) is