Home
Class 12
MATHS
If |z(1)|=|z(2)|andamp(z(1))+amp(z(2))=0...

If `|z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0,` then

A

`z_(1)=z_(2)`

B

`barz_(1)=z_(2)`

C

`z_(1)+z_(2)=-0`

D

`barz_(1)=barz_(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

z_(1) and z_(2) are two complex number such that |z_(1)|=|z_(2)| and arg (z_(1))+arg(z_(2))=pi , then show that z_(1)=-barz_(2)

If the complex numbers z_(1) and z_(2) arg (z_(1))- arg(z_(2))=0 then showt aht |z_(1)-z_(2)|=|z_(1)|-|z_(2)| .

If |z_(1)|=2,|z_(2)|=3,|z_(3)|=4and|z_(1)+z_(2)+z_(3)|=5. then |4z_(2)z_(3)+9z_(3)z_(1)+16z_(1)z_(2)| is

Consider z_(1)andz_(2) are two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| Statement -1 arg (z_(1))-arg(z_(2))=0 Statement -2 The complex numbers z_(1) and z_(2) are collinear.

State true of false for the following: Let z_(1) and z_(2) be two complex number's such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg (z_(1)-z_(2))=0

If |z_(1)|=1(z_(1) ne -1) and z_(2)=(z_(1)-1)/(z_(1)+1) then show that the real part of z_(2) is zero.

If |z_(1)|=|z_(2)|=....|z_(n)|=1 , then show that, |z_(1)+z_(2)+z_(3)+....z_(n)|= |(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))+...+(1)/(z_(n))|

Let z_(1),z_(2) and z_(3) be three non-zero complex numbers and z_(1) ne z_(2) . If |{:(abs(z_(1)),abs(z_(2)),abs(z_(3))),(abs(z_(2)),abs(z_(3)),abs(z_(1))),(abs(z_(3)),abs(z_(1)),abs(z_(2))):}|=0 , prove that (i) z_(1),z_(2),z_(3) lie on a circle with the centre at origin. (ii) arg(z_(3)/z_(2))=arg((z_(3)-z_(1))/(z_(2)-z_(1)))^(2) .

If z_(1),z_(2)inC,z_(1)^(2)+z_(2)^(2)inR,z_(1)(z_(1)^(2)-3z_(2)^(2))=2 and z_(2)(3z_(1)^(2)-z_(2)^(2))=11, the value of z_(1)^(2)+z_(2)^(2) is

If z^(1) =2 -I, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|