Home
Class 12
MATHS
If z^(4)+1=0,"where"i=sqrt(-1) then z ca...

If `z^(4)+1=0,"where"i=sqrt(-1)` then z can take the value

A

`(1+i)/(sqrt(2))`

B

`cos""((pi)/(8))+isin""((pi)/(8))`

C

`(1)/(4i)`

D

`i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z^(3)+(3+2i)z+(-1+ia)=0, " where " i=sqrt(-1) , has one real root, the value of a lies in the interval (a in R)

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If |z-i|le5 and z_(1)=5+3i (where, i=sqrt(-1), ) the greatest and least values of |iz+z_(1)| are

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If z=(i)^(i)^(i) where i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2 is

Let z be a complex number such that the imaginary part of z is nonzero and a = z^2 + z + 1 is real. Then a cannot take the value