Home
Class 12
MATHS
If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) ...

If `|z-2-3i|+|z+2-6i|=4` where `i=sqrt(-1)` then find the locus of `P(z)`

A

an ellipse

B

`phi`

C

line segment of points `2+3i and-26i`

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z+1|=z+2(1+i) then find the value of z.

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

For every real number c ge 0, find all complex numbers z which satisfy the equation abs(z)^(2)-2iz+2c(1+i)=0 , where i=sqrt(-1) and passing through (-1,4).

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If |z-i|le5 and z_(1)=5+3i (where, i=sqrt(-1), ) the greatest and least values of |iz+z_(1)| are

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to