Home
Class 12
MATHS
If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0...

If `(3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0`, where `i=sqrt(-1)`, then z `bar(z)` is equal to

A

10

B

8

C

-9

D

-10

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If z = (sqrt(3)+i)/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If f(z)=(7-z)/(1-z^(2)) where z=1+2i , the |f(z)| is equal to

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If z^(3)+(3+2i)z+(-1+ia)=0, " where " i=sqrt(-1) , has one real root, the value of a lies in the interval (a in R)