Home
Class 12
MATHS
If z=(sqrt(3)-i)/2, where i=sqrt(-1), th...

If `z=(sqrt(3)-i)/2`, where `i=sqrt(-1)`, then `(i^(101)+z^(101))^(103)` equals to

A

iz

B

z

C

`bar(z)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If z = (sqrt(3)+i)/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If (x+iy)^(1//3)=a+ib,"where"i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

sqrt((-8-6i)) is equal to (where, i=sqrt(-1)

The real part of (1-i)^(-i), where i=sqrt(-1) is

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If z=(i)^(i)^(i) where i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)