Home
Class 12
MATHS
If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")...

If `abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z"))`, where `i=sqrt(-1)`, then locus of z, is

A

a pair of straight lines

B

circle

C

parabola

D

ellipse

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If the complex number z is to satisfy abs(z)=3, abs(z-{a(1+i)-i}) le 3 and abs(z+2a-(a+1)i) gt 3 , where i=sqrt(-1) simultaneously for atleast one z, then find all a in R .

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

Let A,B and C be three sets of complex numbers as defined below: {:(,A={z:Im(z) ge 1}),(,B={z:abs(z-2-i)=3}),(,C={z:Re(1-i)z)=sqrt(2)"where" i=sqrt(-1)):} Let z be any point in A cap B cap C . Then, abs(z+1-i)^(2)+abs(z-5-i)^(2) lies between

Let A,B and C be three sets of complex numbers as defined below: {:(,A={z:Im(z) ge 1}),(,B={z:abs(z-2-i)=3}),(,C={z:Re(1-i)z)=3sqrt(2)"where" i=sqrt(-1)):} Let z be any point in A cap B cap C " and " omega be any point satisfying abs(omega-2-i) lt 3 . Then, abs(z)-abs(omega)+3 lies between

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.