Home
Class 12
MATHS
If z^(3)+(3+2i)z+(-1+ia)=0, " where " i=...

If `z^(3)+(3+2i)z+(-1+ia)=0, " where " i=sqrt(-1)`, has one real root, the value of a lies in the interval (a `in` R)

A

(-2,-1)

B

(-1,0)

C

(0,1)

D

(1,2)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

The real part of (1-i)^(-i), where i=sqrt(-1) is

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If |z-i|le5 and z_(1)=5+3i (where, i=sqrt(-1), ) the greatest and least values of |iz+z_(1)| are

If the complex number z is to satisfy abs(z)=3, abs(z-{a(1+i)-i}) le 3 and abs(z+2a-(a+1)i) gt 3 , where i=sqrt(-1) simultaneously for atleast one z, then find all a in R .