Home
Class 12
MATHS
Sum of four consecutive powers of i(iota...

Sum of four consecutive powers of i(iota) is zero.
i.e.,`i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I.`
If `sum_(r=4)^(100)i^(r!)+prod_(r=1)^(101)i^(r)=a+ib, " where " i=sqrt(-1)`, then a+75b, is

A

11

B

22

C

33

D

44

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=-2)^(95)i^(r)+sum_(r=0)^(50)i^(r!)=a+ib, " where " i=sqrt(-1) , the unit digit of a^(2011)+b^(2012) , is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

The real part of (1-i)^(-i), where i=sqrt(-1) is

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

sum_(r=1)^n(2r+1)=...... .

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

If (1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1) for all those n, which are