Home
Class 12
MATHS
Let z(r),r=1,2,3,...,50 be the roots of ...

Let `z_(r),r=1,2,3,...,50` be the roots of the equation `sum_(r=0)^(50)(z)^(r)=0`. If `sum_(r=1)^(50)1/(z_(r)-1)=-5lambda`, then `lambda` equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

sum_(r=1)^n(2r+1)=...... .

If z_(1),z_(2),z_(3) andz_(4) are the roots of the equation z^(4)=1, the value of sum_(i=1)^(4)(z_i)^(3) is

The sum of the series sum_(r=0)^(10) .^(20)C_(r) , is 2^(19)+{(.^(20)C_(10))/2} .

Evaluate sum_(r=1)^(n)rxxr!

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

Let a_(n) be the nth term of an AP, if sum_(r=1)^(100)a_(2r)=alpha " and "sum_(r=1)^(100)a_(2r-1)=beta , then the common difference of the AP is

Let a_n be the n^(t h) term of an A.P. If sum_(r=1)^(100)a_(2r)=alpha & sum_(r=1)^(100)a_(2r-1)=beta, then the common difference of the A.P. is -

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........