Home
Class 12
MATHS
If ax+cy+bz=X, cx+by+az=Y, bx+ay+cz=Z, s...

If `ax+cy+bz=X, cx+by+az=Y, bx+ay+cz=Z,` show that
`(a^(2)+b^(2)+c^(2)-bc-ca-ab)(x^(2)+y^(2)+z^(2)-yz-zx-xy)=X^(2)+Y^(2)+Z^(2)-YZ-ZX-XY`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

If y= e^(ax) sin bx then show that, y_(2)- 2ay_(1) + (a^(2) + b^(2))y= 0

If (a+bx)e^(y//x)=x, show that x^(3)y''=(xy'-y)^(2) .

Factorise 4x^(2) + y^(2) + z^(2) - 4xy - 2yz + 4xz .

Verify that x ^(3) + y ^(3) + z ^(3) - 3xyz =1/2 (x + y + z) [(x-y)^(2) + (y-z) ^(2) + (z-x) ^(2) ]

If x=sint,y=sinKt then show that (1-x^(2))y_2-xy_(1)+K^(2)y=0 .

Expand : (x+2y + 7z)^(2)

Factorise : x^(2) + 4y^(2) + 25z^(2) - 4xy + 20 yz - 10 zx

Factorise : 2x^(2) + y^(2) + 8z^(2) - 2sqrt(2)xy + 4sqrt(2)yz - 8xz

Factorise : 4x^(2) + 9y^(2) + z^(2) + 12xy - 6yz - 4zx