Home
Class 12
MATHS
If w=alpha+ibeta where beta ne 0 and z ...

If `w=alpha+ibeta` where `beta ne 0 ` and `z ne 1` satisfies the condition that `((w- bar wz)/(1-z))` is purely real then the set of values of z is

A

`{z:abs(z)=1}`

B

`{z:z=bar(z)}`

C

`{z:z ne 1}`

D

`{z:abs(z)=1,z ne 1}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the complex number z, satisfying the condition arg((z-1)/(z+1))=(pi)/(4) lie son a circle.

If (z-1)/(z+1) is purely imaginary number (zne-1) then find the value of |z|.

If (z-1)/(z+1)(z ne-1) is purely imaginary then show that |z|=1

If |z+1|=z+2(1+i) then find the value of z.

If z ne 1 and (z^(2))/(z-1) is real, the point represented by the complex numbers z lies

If |z|=1 and z!=+-1, then all the values of z/(1-z^2) lie on

If |z|ge3, then determine the least value of |z+(1)/(z)| .

lf z(!=-1) is a complex number such that [z-1]/[z+1] is purely imaginary, then |z| is equal to

Find the value of z satisfying the euqation |z|-z=1+2i .

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is