Home
Class 12
MATHS
If |z|=1 and z!=+-1, then all the values...

If `|z|=1 and z!=+-1,` then all the values of `z/(1-z^2)` lie on

A

a line not passing through the origin

B

`abs(z)=sqrt(2)`

C

the X-axis

D

the Y-axis

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(1+i)/(√2) , then the value of z^(1929) is

If |z-4/z|=2 then the greatest value of |z| is

If |z+1|=z+2(1+i) then find the value of z.

If |z|ge3, then determine the least value of |z+(1)/(z)| .

If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2 is

If |z+4|le3 then the maximum value fo |z+1| is....

If z is a complex number such that |z|>=2 then the minimum value of |z+1/2| is

Given that |z+4| le 3 then greatest & least values of |z + 1| are

If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

z_(1)=9+3i and z_(2)=-2-i then find z_(1)-z_(2)