Home
Class 12
MATHS
Let A,B and C be three sets of complex n...

Let A,B and C be three sets of complex numbers as defined below: `{:(,A={z:Im(z) ge 1}),(,B={z:abs(z-2-i)=3}),(,C={z:Re(1-i)z)=3sqrt(2)"where" i=sqrt(-1)):} `
Let z be any point in `A cap B cap C " and " omega` be any point satisfying `abs(omega-2-i) lt 3`. Then, `abs(z)-abs(omega)+3` lies between

A

`-6 and 3`

B

`-3 and 6`

C

`-6 and 6`

D

`-3 and 3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A,B and C be three sets of complex numbers as defined below: {:(,A={z:Im(z) ge 1}),(,B={z:abs(z-2-i)=3}),(,C={z:Re(1-i)z)=sqrt(2)"where" i=sqrt(-1)):} Let z be any point in A cap B cap C . Then, abs(z+1-i)^(2)+abs(z-5-i)^(2) lies between

Let A, B, C be three sets of complex number as defined below: A={z:Imge1}, B={z:|z-2-i|= 3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set AnnBnnC is

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

For complex number z =3 -2i,z + bar z = 2i Im(z) .

If z is a complex number satisfying the relation ∣z+1∣=z+2(1+i) then z is

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

Find the polar form of the complex number z=-1+ sqrt(3)i

Find the complex number satsifying the equation z+sqrt(2)|(z+1)|+i=0

The points A,B and C represent the complex numbers z_(1),z_(2),(1-i)z_(1)+iz_(2) respectively, on the complex plane (where, i=sqrt(-1) ). The /_\ABC , is