Home
Class 12
MATHS
If z is any complex number satisfying ab...

If z is any complex number satisfying `abs(z-3-2i) le 2`, where `i=sqrt(-1)`, then the minimum value of `abs(2z-6+5i)`, is

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Similar Questions

Explore conceptually related problems

If z is a complex number satisfying the relation ∣z+1∣=z+2(1+i) then z is

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If z=(1+i)/(√2) , then the value of z^(1929) is

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

If |z+1|=z+2(1+i) then find the value of z.

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

For every real number c ge 0, find all complex numbers z which satisfy the equation abs(z)^(2)-2iz+2c(1+i)=0 , where i=sqrt(-1) and passing through (-1,4).

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z is a complex number such that |z|>=2 then the minimum value of |z+1/2| is