Home
Class 12
MATHS
Let 0 ne a, 0 ne b in R. Suppose S={z ...

Let `0 ne a, 0 ne b in R`. Suppose
`S={z in C, z=1/(a+ibt)t in R, t ne 0}`, where `i=sqrt(-1)`. If `z=x+iy` and `z in S`, then `(x,y)` lies on

A

the circle with radius `1/(2a)` and centre `(1/(2a),0)` for `a gt 0, b ne 0`

B

the circle with radius `-1/(2a)` and centre`(-1/(2a),0)` for `a lt 0,b ne 0`

C

the X-axis for `a ne 0,b=0`

D

the Y-axis for `a=0, b ne 0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If z^(4)+1=0,"where"i=sqrt(-1) then z can take the value

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

Let S=S_1 nn S_2 nn S_3 , where s_1={z in C :|z| 0} and S_3={z in C : Re z > 0}

Suppose cos x = 0 and cos(x+z)=1/2 . Then, the possible value (s) of z is (are).

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

The centre of a square ABCD is at z=0, A is z_(1) . Then, the centroid of /_\ABC is (where, i=sqrt(-1) )

If arg(z-1)=arg(z+3i) , then find x-1,y, where z=x+iy

If x= a t^(2), y= 2 a t" then " (dy)/(dx) = …., where t ne 0

Let z= a+ ib (where a,b,in R and i = sqrt(-1) such that |2z+3i| = |z^(2)| identify the correct statement(s)?