Home
Class 12
MATHS
Statement -1 Let Delta (r)=|{:((r-1),n...

Statement -1 Let
`Delta _(r)=|{:((r-1),n!,6),((r-1)^(2),(n!)^(2),4n-2),((r-1)^(3),(n!)^(3),3n^(2)-2n):}| "then" overset(n+1)underset(r=1)PiDelta_(r)=0`
Statement -2 `overset(n+1)underset(r=1)Pi Delta_(r)=Delta_(2).Delta_(3).Delta_(4)cdotsDelta_(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if D_(k) = |{:( 1,,n,,n),(2k,,n^(2)+n+1 ,,n^(2)+n),(2k-1,,n^(2),,n^(2)+n+1):}|" and " overset(n)underset(k=1)(Sigma) D_(k)=56 then n equals

int (overset(n)underset(r=i)pi(x+r))(overset(n)underset(k=1)sum(1)/(x+k))dx=....

((n),(r))+2.((n),(r-1))+((n),(r-2))=((n+2),(r))

((n),(r))+((n),(r-1))=((n+1),(r-1))

Prove that ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))

underset(r=1)overset(n)Sigma (underset(m=1)overset(r )Sigma m)= ……

if ((n),(r)) + ((n),(r-1)) = ((n + 1),(x)), then x = ....

If ((n),(r)) = ((n),(r+2)), then r = …… ,

If D_r=|2^(r-1)2(3^(r-1))4(5^(r-1))x y z2^n-1 3^n-1 5^n-1| then prove that sum_(r=1)^n D_r=0.

If |{:(x^(n),x^(n+2),x^(2n)),(1,x^(a),a),(x^(n+5),x^(a+6),x^(2n+5)):}| =0 forallx in "R where n" in N, the value of a is