Home
Class 12
MATHS
Prove that: |(-2a , a+b , a+c ) ( b+a ,...

Prove that: `|(-2a , a+b , a+c ) ( b+a ,-2b , b+c ) ( c+a, c+b , -2c)|`=4(a+b)(b+c)(c+a)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that {:[( b+c,a,a), ( b,c+a,b),( c,c,b+a) ]:}

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

Using properties of determinants in Exercise 11 to 15 prove that |{:(3a,-a+b,-a+c),(-b+a,3b,-b+c),(-c+a,-c+b,3c):}|=3(a+b+c)(ab+bc+ca)

Prove that |b c-a^2c a-b^2a b-c^2-b c+c a+a bb c-c a+a bb c+c a-a b(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)|=3.(b-c)(c-a)(a-b)(a+b+c)(a b+b c+c a)

Prove that the (a, b+c), (b, c+a) and (c, a+b) are collinear.

Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0

Prove that |{:(a,a+b,a=b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a+6b+3c):}|=a^3

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

Prove that |{:(a^2,bc,ac+c^2),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2):}|=4a^2b^2c^2

Prove that |{:(b+c,c,b),(c,c+a,a),(b,a,a+b):}| =4 abc.