Home
Class 12
MATHS
An equilateral triangle has each of its ...

An equilateral triangle has each of its sides of length 4 cm. If `(x_(r),y_(r))` (r=1,2,3) are its vertices the value of `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|^2`

A

192

B

768

C

1024

D

128

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

An equilateral triangle has each of its sides of length 6 cm. If (x_1, y_1);(x_2, y_2)&(x_3, y_3) are its vertices, then the value of the determinant |x_1y_1 1x_2y_2 1x_3y_3 1|^2 is equal to: 192 (b) 243 (c) 486 (d) 972

If the co-ordinates of the vertices of an equilateral trianlg with sides of length 'a' are (x_1,y_1),(x_2,y_2),(x_3,y_3) , then Prove that |{:(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1):}|^2=(3/4)a^4.

An equilateral triangle has each side equal to a. If the coordinates of its vertices are (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) then the square of the determinant |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| equals

Find the coordinates of the centroid of the triangle whose vertices are (x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2))and(x_(3),y_(3),z_(3)) .

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

Let A(4,2), B(6,5) and C(1,4) be the vertices of Delta ABC (1) The median from A meets BC at D. Find the coordinates of the points D. (2) Find the coordinates of the points P on AD such that AP : PD = 2 : 1 (3) Find the coordinates of points Q and R on medians BE and CF respectively such that BQ : QE = 2 : 1 and CR : RE = 2 : 1 (4) What do you observe ? [Note : The point which is common to all the three medians is called the centroid and this point divides each median in the ratio 2 : 1 ] (5) If A(x_(1), y_(1)), B(x_(2), y_(2)) and C(x_(3),y_(3)) are the vertices of Delta ABC find the coordinates of the centroid of the triangle

If (x+1, y-2)=(3,1), find the values of x and y.

If (x/3+1, y-2/3)=(5/3, 1/3) , find the values of x and y.

If x_(1),x_(2) "and" y_(1),y_(2) are the roots of the equations 3x^(2) -18x+9=0 "and" y^(2)-4y+2=0 the value of the determinant |{:(x_(1)x_(2),y_(1)y_(2),1),(x_(1)+x_(2),y_(1)+y_(2),2),(sin(pix_(1)x_(2)),cos (pi//2y_(1)y_(2)),1):}| is

If ((x)/(3)+ 1, y- (2)/(3))= ((5)/(3), (1)/(3)) , find the value of x and y.