Home
Class 12
MATHS
If p + q + r = a + b + c = 0, then the d...

If `p + q + r = a + b + c = 0`, then the determinant `|{:(pa,qb,rc),(qc,ra,pb),(rb,pc,qa):}|` equals

A

0

B

pa+qb+rc

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If bc +qr=ca+rp=ab+pq=-1 , show that |{:(ap,bp,cr),(a,b,c),(p,q,r):}|=0

Without expanding the determinant prove that: {:|(0,p-q,p-r),( q-p,0, q-r),(r-p,r-q,0)|:}=0

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero

the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha+c,,0):}|=0 is equal to zero if

If p,q and r are in AP the value of determinant |{:(a^(2)+2^(n+1)+2p,b^(2)+2^(n+2)+2q,c^(2)+p),(2^(n)+p,2^(n+1)+q,2q),(a^(2)+2^(n)+p,b^(2)+2^(n+1)+q,c^(2)-r):}| is

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

Given that q^2-p r 0, then the value of {:|(p, q, px+qy), (q, r, qx+ry), (px+qy, qx+ry, 0) |:} is- a. zero b. positive c. negative \ d. q^2+p r

If pth,qth and rth terms of an A.P. are a, b, c respectively, then show that a(q-r)+b(r-p)+c(p-q)=0

If p^(th),q^(th)and r^(th) tern of G.P are a,b and c respectively then |{:(loga,p,1),(logb,q,1),(logc,r,1):}|=0

If the determinant |{:(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h):}| splits into exactly K determinants of order 3, each elements of which contains only one term, then the value of K is 8