Home
Class 12
MATHS
If l(i)^(2)+m(i)^(2)+n(i)^(2)=1, (i=1,2,...

If `l_(i)^(2)+m_(i)^(2)+n_(i)^(2)=1`, (i=1,2,3) and `l_(i)l_(j)+m_(i)m_(j)+n_(i)n_(j)=0,(i ne j,i,j=1,2,3)` and `Delta=|{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}|` then

A

`|Delta|`=3

B

`|Delta|`=2

C

`|Delta|`=1

D

`|Delta|`=0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

If veca, vecb and vecc are any three non-coplanar vectors, then prove that points l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc are coplanar if |{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

Explain giving reasons which of the following sets of quantum number are not possible (a ) n=0, l =0 m_(l) = 0, m_(s ) =+ (1)/(2) ( b) n=1 , l = 0 m_(l) = 0, m_(s ) = - (1)/(2) ( c) n=1 , l = 1, m_(l ) = 0, m_(s ) = + (1)/(2) (d ) n= 2, l = 1, m_(l ) = 0, m_(s ) = (1) /(2) ( e) n=3, l = 3, m_(l) = 3, m_(s ) = + (1)/(2) (f ) n=3, l = 1, m_(l) = 0, m_(s) l = + (1)/(2)

If (1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1) for all those n, which are

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

The quantum number of six electrons are given below ,Arrange them in order of increasing energies . If any of these combination has have the same energy lists : (1) n-4 ,l=2 , m_(1) = 2m_(1) = (1)/(2) (2) n=3 , l = 2, m_(1) = 1 ,m_(s) = (1)/(2) (3 ) n=4 , l = 1 , m_(1) = =0 m_(s ) = (1)/(2) (4 ) n=3: l = 2 m_(1) = - 2 m_(s ) = - (1)/(2) (5 ) n=3 , l = 1,m_(1) = - 1 m_(s ) = (1)/(2) (6) n=4 , l = 1, m_(1) = 0 m_(s ) = (1)/(2)

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

Construct a_(2xx2) matrix where (i) a_(ij)=((i-2j)^(2))/(2) (ii) a_(ij)=|-2i+3j|