Home
Class 12
MATHS
Let f(x) =|{:(x^(3), sinx,cosx),(6,-1,0)...

Let f(x) =`|{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}|` where p is a constant. Then `d^(3)/dx^(3){f(x)}` at x=0 is

A

p

B

p+`p^(2)`

C

p+`p^(3)`

D

independent of p

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of integration then f(x) equals:

|{:(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c):}|=0 where a,b,c are in A.P

The value of p(x) = x^(3) + x^(2) - 3x-3 at x = -1 is …… .

If F(x)=[{:(cosx,-sinx,0),(sinx,cosx,0),(0,0,1):}] ,show that F(x)F(y)=F(x+y) .

A random variable X takes the values 0,1,2,3,..., with probability P(X=x)=k(x+1)((1)/(5))^x , where k is a constant, then P(X=0) is.

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let p(x)=x^(2)-4x+3 . Find the value of p(0),p(1),p(2),p(3) and obtain zeroes of the polynomial p(x) .

If f(x)=x^(2)-2x then find f(A) where A=[{:(0,1,2),(4,5,0),(0,2,3):}] .