Home
Class 12
MATHS
Let f(x) = |(2cos^2x, sin2x, -sinx), (si...

Let `f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|`, then the value of `int_0^(pi//2){f(x) + f'(x)} dx` is

A

`(pi)/(2)`

B

`pi`

C

`(2pi)/(2)`

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluation of definite integrals by subsitiution and properties of its : f(x)=|(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)| then int_(0)^(pi/2)f(x)dx=……….

int(sin2x)/((sinx+cosx)^2)dx

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Prove that (sinx-sin3x)/(sin^(2)x-cos^(2)x)=2sinx

|{:(sinx,cosx),(sinx,sinx):}|=|{:(cosx,cosx),(cosx,sinx):}|,x in(0,pi/2) then x=……….

If f(x) = |{:(cos x ,e^(x^(2)),2xcos^(2)((x)/(2))),(x^(2),secx,sinx+x),(1,2,x+tanx):}| the value of f_(-pi//2)^(pi//2)(x^(2)+1) [f(x)+f''(x)]dx is

if: f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the range of f(x)

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

Prove that, (sin5x-2sin3x+sinx)/(cos5x-cosx)=tanx

cos(2pi -x) cos (-x) - sin(2pi +x) sin (-x) = 0