Home
Class 12
MATHS
if D(k) = |{:( 1,,n,,n),(2k,,n^(2)+n+1 ,...

if `D_(k) = |{:( 1,,n,,n),(2k,,n^(2)+n+1 ,,n^(2)+n),(2k-1,,n^(2),,n^(2)+n+1):}|" and " overset(n)underset(k=1)(Sigma) D_(k)=56` then n equals

A

4

B

6

C

8

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate underset(n=2)overset(10)Sigma 4^(n)

Statement -1 Let Delta _(r)=|{:((r-1),n!,6),((r-1)^(2),(n!)^(2),4n-2),((r-1)^(3),(n!)^(3),3n^(2)-2n):}| "then" overset(n+1)underset(r=1)PiDelta_(r)=0 Statement -2 overset(n+1)underset(r=1)Pi Delta_(r)=Delta_(2).Delta_(3).Delta_(4)cdotsDelta_(n+1)

Evaluate overset(13) underset(n=1) sum (i^(n)+i^(n+1)) , where n in N .

int (overset(n)underset(r=i)pi(x+r))(overset(n)underset(k=1)sum(1)/(x+k))dx=....

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

If S_(n)=1 + (1)/(2) + (1)/(2) + …..+ (1)/(2^(n-1)), (n in N) then …….

1+2+3+…….+(n+1)= ((n+1) (n+2))/(2) , n in N .

If A=[{:(3,-4),(1,-1):}] , then prove that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] where n is any positive integer .