Home
Class 12
MATHS
The value of sum(r=2)^n (-2)^r|(n-2C(r-...

The value of `sum_(r=2)^n (-2)^r|(n-2C_(r-2),n-2C_(r-1),n-2C_r),(-3,1,1),(2,-1,0)|(n > 2)`

A

`2n-1+(-1)^(n)`

B

`2n+1+(-1)^(n)`

C

`2n-3+(-1)^(n)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sum_(r=1)^(n)rxxr!

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

The sum of the series sum_(r=0)^(10) .^(20)C_(r) , is 2^(19)+{(.^(20)C_(10))/2} .

sum_(r=1)^n(2r+1)=...... .

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

If alpha_(1), alpha_(2), alpha_(3), beta_(1), beta_(2), beta_(3) are the values of n for which sum_(r=0)^(n-1)x^(2r) is divisible by sum_(r=0)^(n-1)x^(r ) , then the triangle having vertices (alpha_(1), beta_(1)),(alpha_(2),beta_(2)) and (alpha_(3), beta_(3)) cannot be

Statement -1 Let Delta _(r)=|{:((r-1),n!,6),((r-1)^(2),(n!)^(2),4n-2),((r-1)^(3),(n!)^(3),3n^(2)-2n):}| "then" overset(n+1)underset(r=1)PiDelta_(r)=0 Statement -2 overset(n+1)underset(r=1)Pi Delta_(r)=Delta_(2).Delta_(3).Delta_(4)cdotsDelta_(n+1)

If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c and a,b,c are in AP. The value of sum_(r=1)^(30)((27Delta_(r)-Delta3_(r))/(27r^(2))) is