Home
Class 12
MATHS
If alpha,beta!=0,andf(n)""=alpha^n+beta^...

If `alpha,beta!=0`,and`f(n)""=alpha^n+beta^n`and `|{:(3,1+f(1),1+f(2)),(1+f(1),1+f(2),1+f(3)),(1+f(2),1+f(3),1+f(4)):}|`=K`(1-alpha)^2(1-beta)^2(alpha-beta)^2`,then K is equal to

A

1

B

-1

C

`alphabeta`

D

`alphabetagamma`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(n)=alpha^n+beta^n then show that |{:(3,1+f(1),1+f(2)),(1+f(1),1+f(2),1+f(3)),(1+f(2),1+f(3),1+f(4)):}|=(1-alpha)^2(1-beta)^2(alpha-beta)^2

If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)|=K(1-alpha)^2(1-beta)^2(alpha-beta)^2 , then K is equal to (1) alphabeta (2) 1/(alphabeta) (3) 1 (4) -1

If f(x)= x^(2 )+ 2x + 3 then find f(1), f(2), f(3)

If f(x)=x^(2)," find "(f(1.1)-f(1))/((1.1-1))

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals

f:R rarr R , f(x) = {(12x+5,x gt1),(x-4,xle1):} then find f(0),f(-1/2), f(3),f(-5) .

If f'(x)=x-(1)/(x^(2)) and f(1)=(1)/(2) then find f(x).

If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8))=alpha,alpha is constant, then f(tan^(-1)(tan8)) is equal to

If f'(x)=1-(4)/(x^(2)) and f(1)=6 then find f(x) and f(2).