Home
Class 12
MATHS
When the determinant |{:(cos2x,sin^(2)x,...

When the determinant `|{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)x),(cos4x,cos^(2)x,cos2x):}|` is expanded in powers of sin x , the constant term is equal to expression is

A

1

B

0

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int (dx)/(sin^(2)x cos^(2)

cos 4x =1- 8 sin ^(2) x cos ^(2) x

Evaluate int (sin^(6) x + cos^(6)x)/(sin^(2)x cos^(2)x) dx

Prove that cos4x=1-8sin^(2)xcos^(2)x

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

Find the integrals of the functions (cos2x+2sin^(2)x)/(cos^(2)x)

int(cos^4x-sin^4x)/(sqrt(1+cos4x))dx , (cos2xgt0)

Evaluate int (dx)/(sin^(2)x cos^(2) x)

int(sin^(3)2x)/(cos^(5)2x)dx=...