Home
Class 12
MATHS
The number of positive integral solution...

The number of positive integral solutions of the equation `|(x^3+1,x^2y,x^2z),(xy^2,y^3+1,y^2z),(xz^2,z^2y,z^3+1)|=11` is

A

0

B

3

C

6

D

12

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral solutions of equation x+y+z+t=29, when x >= 1, y >= 2, z>= 3 and t >= 0 is

Using the properties of determinants in Exercise 1 to 6, evaluate |{:(0,xy^2,xz^2),(x^2y,0,yz^2),(x^2z,y^2z,0):}|

Using properties of determinants in Exercise 11 to 15 prove that |{:(x,x^2,1+px^3),(y,y^2,1+py^3),(z,z^2,1+pz^3):}|=(1+pxyz)(x-y)(y-z)(z-x)

Using the properties of determinants in Exercise 1 to 6, evaluate |{:(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z):}|

If x,y,z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3):}| =0 then show that 1+xyz=0

Find the nature of solution for the given system of equation: x+2y+3z=1;2x+3y+4z=3;3x+4y+5z=0

Prove that |{:(x^2,y^2,z^2),((x+1)^2,(y+1)^2,(z+1)^2),((x-1)^2,(y-1)^2,(z-1)^2):}|=-4(x-y)(y-z)(z-x)

show that [((x+y)^2 , zx , zy),( zx, (z+y)^2 ,xy),(zy,xy,(z+x)^2)]=2xyz (x +y+z)^3

Solve the system of linear equations, using matrix method {:(x+y+z=6),(y+3z=1),(x+z=2y):}}.

The number of value of k for which the linear equations 4x+k y+2z=0,k x+4y+z=0, 2x+2y+z=0 posses a non-zero solution is- a. 1 b. \ zero c. \ 3 d. 2