Home
Class 12
MATHS
Given (f(x) =log(10) x and g(x) = e^(pii...

Given (f(x) `=log_(10)` x and g(x) = `e^(piix)` .
`phi (x) =|{:(f(x).g(x),(f(x))^(g(x)),1),(f(x^(2)).g(x^(2)),(f(x^(2)))^(g(x^(2))),0),(f(x^(3)).g(x^(3)),(f(x^(3)))^(g(x^(3))),1):}|` the value of `phi` (10), is

A

1

B

2

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

f(x)=log_(x^(2)) 25 and g(x)=log_(x)5. Then f(x)=g(x) holds for x belonging to

If f(x) - g(x) is constant then f'(x) = g'(x)

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

Let f(x)=x^2+xg'(1)+g''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

If the functions f(x)=x^(5)+e^(x//3) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .