Home
Class 12
MATHS
The value of the determinant |(1,(alpha...

The value of the determinant `|(1,(alpha^(2x)-alpha^(-2x))^2,(alpha^(2x)+alpha^(-2x))^2),(1,(beta^(2x)-beta^(-2x))^2,(beta^(2x)+beta^(-2x))^2),(1,(gamma^(2x)-gamma^(-2x))^2,(gamma^(2x)+gamma^(-2x))^2)|` is (a) 0 (b) `(alphabeta gamma)^(2x)` (c) `(alpha beta gamma)^(-2x)` (d) None of these

A

0

B

`(alphabeta)^(2x)`

C

`(alphabeta)^(-2x)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If p''(x) has real roots alpha,beta,gamma . Then , [alpha]+[beta]+[gamma] is

The value of the determinant {:|(alpha,beta,l), (alpha,x, n),(alpha,beta,x)|:} is a. independent of l b. independent of n c. alpha(x-l)(x-beta) d. alphabeta(x-l)(x-n)

The angle between the lines (x^(2)+y^(2))sin^(2)alpha=(x cos beta-y sin beta)^(2) is

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta)

If a matricx [{:(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma):}] is a orthogonal matrix then ………

Show that the determinant Delta (x) is given by Delta (x) = |{:(sin(x+alpha),cos(x+alpha),a+xsinalpha),(sin(x+beta),cos(x+beta),b+xsinbeta),(sin(x+gamma),cos(x+gamma),c+xsingamma):}| is independent of x.

If 102!=2^(alpha)*3^(beta)*5^(gamma)*7^(delta) …, then

If A=[{:(alpha,beta),(gamma,-alpha):}] is such that A^(2)=I , then ……

If alpha, beta are the roots of the equation x^(2)-px+q=0 , prove that log_(e)(1+px+qx^(2))=(alpha+beta)x-(alpha^(2)+beta^(2))/(2)x^(2)+(alpha^(3)+beta^(3))/(3)x^(3)-...