Home
Class 12
MATHS
The value of the determinant |{:(sqrt(...

The value of the determinant `|{:(sqrt(6),2i,3+sqrt(6)i),(sqrt(12),sqrt(3)+sqrt(8)i,3sqrt(2)+sqrt(6)i),(sqrt(18),sqrt(2)+sqrt(12)i,sqrt(27)+2i):}|` is (where i=`sqrt(-1)`

A

complex

B

real

C

irrational

D

rational

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of determinant |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5):}| .

|{:(sqrt(14)+sqrt3,sqrt(20),sqrt5),(sqrt(15)+sqrt(28),sqrt(25),sqrt(10)),(3+sqrt(70),sqrt(15),sqrt(25)):}|=.......

sqrt((-8-6i)) is equal to (where, i=sqrt(-1)

Prove that |{:(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5):}|=5sqrt3(sqrt6-5)

Add 2sqrt2+5sqrt3 and sqrt2-3sqrt2

4sqrt(6)xx3sqrt(24) = :-

sqrt(3)x^(2) - sqrt(2)x + 3sqrt(3)=0

{sqrt(5+12i)+sqrt(5-12i)}/(sqrt(5+12i)-sqrt(5-12i) =

Prove that, cot""(pi)/(24)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Simplify : (3sqrt2-2sqrt3)/( 3sqrt2+2sqrt3) +(sqrt(12))/( sqrt3- sqrt2)