Home
Class 12
MATHS
If Deltar=|[2^(r-1),1/(r(r+1)),sin rthet...

If `Delta_r=|[2^(r-1),1/(r(r+1)),sin rtheta],[x, y, z],[2^n-1, n/(n+1),((sin)(n+1)/2 theta (sin) n/2 theta) /(sintheta/2)]|, then sum_(r=1)^n Delta_r ` is equal to

A

independent of x,y,z

B

independent of n

C

independent of `theta`

D

All of above

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that , sin theta + sin 2theta + ……+ sin n theta = ( (sin( n theta/(2)) sin ((n+1)/(2))theta))/(sin theta/2) , for all n in N .

Evaluate sum_(r=1)^(n)rxxr!

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

sum_(r=1)^n(2r+1)=...... .

Find the remainder when sum_(r=1)^(n)r! is divided by 15, if n ge5 .

If D_r=|2^(r-1)2(3^(r-1))4(5^(r-1))x y z2^n-1 3^n-1 5^n-1| then prove that sum_(r=1)^n D_r=0.

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Prove that cos theta cos 2theta cos2^2 theta … cos 2^(n-1) theta = (sin2^n theta)/(2^n.sin theta) , for all n in N

If [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )